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Disease control is largely based on the use of fungicides, bactericides, and insecticides—chemical compounds toxic to plant
invaders, causative agents, or vectors of plant diseases. However, the hazardous effect of these chemicals or their degradation
products on the environment and human health strongly necessitates the search for new, harmless means of disease control.
ere must be some natural phenomenon of induced resistance to protect plants from disease. Elicitors are compounds, which
activate chemical defense in plants. Various biosynthetic pathways are activated in treated plants depending on the compound
used. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, benzothiadiazole, benzoic acid, chitosan, and so forth
which affect production of phenolic compounds and activation of various defense-related enzymes in plants.eir introduction into
agricultural practice couldminimize the scope of chemical control, thus contributing to the development of sustainable agriculture.
is paper chie�y highlights the uses of elicitors aiming to draw su�cient attention of researchers to the frontier research needed
in this context.

1. Introduction

Plants are challenged by a variety of biotic stresses like fungal,
bacterial, or viral infections. is lead to a great loss to plant
yield. ere are various options available for the farmers to
protect their crop from the disease. Some options include
development of resistant cultivars, biological control, crop
rotation, tillage, and chemical pesticides. Nearly all chemical
pesticides or fungicides have a direct antibiotic principle. But
their use at commercial level is uneconomical, application
is cumbersome, and some are proved to be carcinogenic.
erefore, considerable efforts have been accomplished to
devise environmental-friendly strategies for the check of
plant diseases and thus to save mankind from health hazard
[1].

Plants can activate separate defense pathways depending
on the type of pathogen encountered [2]. Jasmonic acid
(JA) and ethylene dependent responses seem to be initi-
ated by necrotrophs, whereas salicylic acid (SA) depen-
dent response is activated by biotrophic pathogens. e

mechanisms responsible for this differential recognition and
response may involve crosstalk among these three different
signal transduction pathways: JA, ethylene, and SA.

e better understanding of plant signalling pathways
has led to the discovery of natural and synthetic compounds
called elicitors that induce similar defense responses in plants
as induced by the pathogen infection [3]. Different types
of elicitors have been characterized, including carbohydrate
polymers, lipids, glycopeptides, and glycoproteins. In plants,
a complex array of defense response is induced aer detec-
tion of microorganism via recognition of elicitor molecules
released during plant-pathogen interaction. Following elici-
tor perception, the activation of signal transduction pathways
generally lead to the production of active oxygen species
(AOS), phytoalexin biosynthesis, reinforcement of plant cell
wall associated with phenyl propanoid compounds, depo-
sition of callose, synthesis of defense enzymes, and the
accumulation of pathogenesis-related (PR) proteins, some
of which possess antimicrobial properties [4]. AOS lead
to hypersensitive response (HR) [5] in plants which is a
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localized or rapid death of one or few cells at the infection
site to delimit the pathogen growth. Following the activation
of HR, uninfected distal parts of the plant may develop
resistance to further infection, by a phenomenon known as
systemic acquired resistance (SAR), which is effective against
diverse pathogens, including viruses, bacteria, and fungi
[6].

2. Host Pathogen Interaction

Resistance in plant species is oen divided into host- or
nonhost-speci�c resistance. Host-speci�c resistance involves
interactions between speci�c host and pathogen genotypes,
which give a pathogen race-speci�c resistance. Nonhost
resistance, shown by a whole plant species against a speci�c
parasite or pathogen, is the most common form of resistance
in plants towards the majority of potential pathogens [7].
e biochemical changes that occur during infection are
very similar in host and nonhost resistant plants [8]. Disease
spreads only in susceptible plants (compatible interactions)
which are unable to recognize the pathogen or respond too
slowly [2].

e hypersensitive response is triggered by the plant
when it recognizes a pathogen. e identi�cation of a
pathogen typically occurs when avirulence (Avr) gene prod-
ucts, secreted by pathogen, bind to or indirectly interact with
the product of a plant resistance (R) gene (gene for gene
model). When both the R gene and corresponding Avr genes
are present, recognition occur, which lead to active resistance
of the plant and avirulence of the pathogen. If either Avr
gene in the pathogen or R gene in the host is absent or is
mutated, no recognition will occur and outcome will be a
compatible reaction and disease [9]. As a result of putative
binding of these two partners, a signal transduction cascade
is activated and lead to the activation of a variety of plant
defense responses. e defense responses are associated with
restriction of pathogen growth. R gene products are highly
polymorphic andmany plants produce several different types
of R gene products, enabling them to act as a receptor
of Avr proteins produced by many different pathogens
[7].

2.1. Hypersensitive Response (HR). Direct physiological con-
tact between the host and infecting parasite is obviously
necessary for the activation ofHR.eHRwas �rst described
by Stakman [10] to describe rapid host cell death in resistant
wheat plants upon infection by rust fungi. Hypersensitivity is
a rapidly developing defense reaction induced in incompati-
ble host by a plant pathogen, which results in the death of a
limited number of host cells and a concomitant localization
of the pathogen. Some investigators have described the
HR as resembling the process of apoptosis, the principal
manifestation of programmed cell death in many animal
cell types [11]. is de�nition has now expanded to include
defense gene expression in addition to cell death [7]. e HR
is analogous to the innate immune response found in animals.
HR provides resistance to biotrophic pathogens that obtain
their energy from living cells [12].

2.2. Generation of Reactive Oxygen Species (ROS). e
�rst report on the rapid generation of ROS during plant-
pathogen interactions was by Doke [13] in Phytophthora
infestans—potato interaction. In studies involving bacteria
and cell suspensions in the incompatible interaction, there are
two phases of ROS production, termed as “oxidative burst”.
Phase 1 is rapid, transient, and nonspeci�c, whereas phase
2 occurs later and yields a much higher concentration of
ROS [14]. is speci�c, biphasic response is proposed to
be an important component of plant defense [15] because
in compatible interactions only the �rst phase is induced
[16]. e two distinct phases of the oxidative burst are seen
only when an R gene and an Avr gene are both present, for
example, with transgenic tomato plants differing only in the
presence or absence of the R gene, Pto, and the bacterial
pathogen, Pseudomonas syringae pv. tomato, with the avr
gene, avrPto. is con�rms that the second phase of the
oxidative burst is associated with disease resistance [17].
e earlier defense responses are the opening of speci�c ion
channels across the plasmamembranes, the rapid production
of AOS, such as O2

− and H2O2, known as the oxidative burst
or phosphorylation or dephosphorylation of speci�c proteins
[18]. ese initial reactions are the prerequisite for initiation
of the signalling network that will trigger the overall defense
response [19].

2.3. Sources of ROS. ROS are toxic intermediates that are
generated through the sequential one electron reduction
steps of molecular oxygen [20]. Various enzyme systems have
been proposed as the source of ROS in plants. An NADPH
oxidase system similar to that of mammalian systems or a
pH-dependent cell wall peroxidase may be two sources of
oxidative burst [21]. If NADPH oxidase activity is a ROS gen-
erating system, O2

− should be the initial product produced,
however the O2

− generated is usually rapidly dismutated to
H2O2 via SOD. erefore, in most systems H2O2 appears
to be the major ROS that accumulates. Under physiological
conditions, the �rst reduction of O2 forms the superoxide
anion (O2

−) and hydroperoxyl radical (HO2
•), the second

step forms hydrogen peroxide (H2O2), and the third step
produces hydroxyl radical (OH•). OH• and O2

− possess very
short half lives.UnchargedH2O2 ismore stable, whereasOH•

cannot migrate in solution and instead reacts locally, notably
with molecular targets by modifying their structure and
activity. H2O2 as well as OH

• can react with polyunsaturated
lipids in membranes forming lipid peroxides, which can lead
to biological membrane destruction [22].

2.4. Role of ROS in Plant Disease Resistance. ROS species
such as O2

−, OH•, and H2O2 are commonly produced under
stress conditions and are strong oxidizing species that can
rapidly attack all types of biomolecules and damage. For
the protection from oxidative damage, plant cells contain
both oxygen radical detoxifying enzymes such as catalase,
peroxidase, and superoxide dismutase, and nonenzymatic
antioxidants such as ascorbate peroxidase and glutathione-
S-transferase [55]. ese enzymes play a crucial role in the
protection of plant cells from oxidative damage at the sites of
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enhanced ROS generation [56]. e cooperative function of
these antioxidants plays an important role in scavenging ROS
and maintaining the physiological redox status of organisms
[57].

2.5. Systemic Acquired Resistance (SAR). Host plants can
be protected against further pathogen attack if they have
survived earlier infection by phytopathogenic viruses, bac-
teria, or fungi. It appears that the �rst infecting pathogen
immunizes the plant against further infections by homolo-
gous pathogens, even though the plant may not carry gene
determining cultivar-speci�c resistance. e readiness of the
plant to repel subsequent pathogen attacks spread throughout
the whole plant. is response is called systemic acquired
resistance (SAR).e development of SAR is oen associated
with various cellular defense responses, such as synthesis of
PR proteins, phytoalexins and accumulation of AOS, rapid
alterations in cell wall, and enhanced activity of various
defense related enzymes [58].

2.6. Sequence of Events Associated with the Establishment
of SAR. e onset of SAR in noninfected plant organs is
triggered by the phloem mobile signal which is released
following pathogen infection. e signal travels throughout
the plant and transduced in target tissues. Following signal
transduction, resistance is maintained for several days and
weeks and this is likely due to de novo gene expression. e
biochemical changes that occur during SAR can be divided
into two phases, that is, initiation and maintenance. Phys-
iological changes during initiation phase may be transient
and short lived, but during maintenance a quasisteady state
should exist.

3. Elicitors and Their Mode of Action

Originally the term elicitor was used for molecules capable
of inducing the production of phytoalexins, but it is now
commonly used for compounds stimulating any type of
plant defense [59–61]. Eventually, the induction of defense
responses may lead to enhanced resistance. is broader
de�nition of elicitors includes both substances of pathogen
origin (exogenous elicitors) and compounds released from
plants by the action of the pathogen (endogenous elicitors)
[59, 62]. Elicitors are classi�ed as physical or chemical, biotic
or abiotic, and complex or de�ned depending on their origin
and molecular structure (Table 1).

Elicitors may be divided into two groups, “general elici-
tors� and “race speci�c elicitors�. �hile general elicitors are
able to trigger defense both in host and nonhost plants, race
speci�c elicitors induce defense responses leading to disease
resistance only in speci�c host cultivars. A complementary
pair of genes in a particular pathogen race and a host cultivar
determines this cultivar speci�c (gene-for-gene) resistance.
us, a race speci�c elicitor encoded by or produced by the
action of an avirulence gene present in a particular race of
a pathogen will elicit resistance only in a host plant variety
carrying the corresponding resistance gene. e absence of

either gene product will oen result in disease [19, 63–
67]. In contrast, general elicitors signal the presence of
potential pathogens to both host and nonhost plants [61].e
nonspeci�c nature of general elicitors is relative, however,
and some of these are only recognized by a restricted number
of plants [68].

Recent studies have indicated remarkable similarities
between the defense mechanisms triggered by general elici-
tors and the innate immunity of animals, and it is tempting
to speculate that the recognition of general elicitors subse-
quently leads to plant innate immunity [69]. Elicitors act as
signal compounds at low concentrations, providing informa-
tion for the plant to trigger defense, distinguishing elicitors
from toxins, which may act only at higher concentrations
and/or affect the plant detrimentally without active plant
metabolism [62]. Elicitor signal transduction mechanism
which activates plant primary immune response is shown in
Figure 1.

4. Commercialization

Alternatives to fungicides in plant protection have arisenwith
the discovery of disease resistance inducers of biotic and
abiotic origins that induce a localized or systemic resistance
in susceptible plants, which become resistant to subsequent
infections. Depending on their efficacy, these compounds
can be used in �elds either alone or in combination with
fungicides.

Many compounds have been commercially released in
some countries as a plant health promoter of annual crops
under the name Bion or Actigard [70]. e SA-dependent
defense pathway can be activated by treatment of plants
with chemical inducers such as benzo (1,2,3)-thiadiazole-7-
carbothioic acid-S-methyl ester (acibenzolar-S-methyl, ASM
or BTH, Bion) developed as a potent SAR activators which
do not only possess antimicrobial properties, but instead
increase the crop resistance to diseases by activating SAR
signal transduction pathways in several plant species. BTH is
a chemical analogue of SA and has been used successfully to
induce resistance to a wide range of diseases on �eld crops.
e nonprotein amino acid 𝛽𝛽-aminobutyric acid (BABA)
protects numerous plants against various pathogens. Several
products have also been used as inducers of resistance
in plants against pathogens, including chitosan [71, 72],
salicylic acid analogues [24, 73, 74], living or processed fungal
products [75], and seaweed extracts [76]. Certain synthetic
compounds with no direct antimicrobial effect such as 2,6-
dichloroisonicotinic acid (INA) and potassium salts has been
reported to induce SAR in plants [77]. Table 2 shows the list
of various elicitors used and their effects on different plant
species.

5. Conclusion

e use of elicitors in crop protection and pest management
is still in the very early stages of use as a new control method,
and thus the current experiences come from experimental
trials, and not yet from large scale agricultural use. At least the
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F 1: Primary immune response of plant in plant-pathogen interaction.

T 1: List of various types of plant elicitors.

Type of elicitors and their examples

Physical elicitors Injury

Chemical elicitors Abiotic elicitors: Metal ions
Biotic elicitors:

(1) Complex composition (2) �e�ned composition
Yeast cell wall, mycelia cell
wall, and fungal spores (2.1) Carbohydrates

Polysaccharides: Oligosaccharides:

Alginate, pectin, and chitosan
Mannuronate,
guluronate, mannan,
and galacturonides

(2.2) Proteins
Peptides: Proteins:

Glutathione Cellulase and
oligandrin

(2.3) Lipids
Lipopolysaccharides

(2.4) Glycoproteins
Not characterized

(2.5) Volatiles
C6–C10 compounds

following advantages of using elicitor treatments have been
reported or can be expected:

(1) reduced damage from insects, fungi, pests, and herbi-
vores,

(2) reduced environmental hazards as elicitors affect
directly the crop plant, and their acute toxicity to
other organisms is lower than that of pesticides,

(3) as protective agrochemicals, elicitors can be applied
with the current spraying technology,

(4) elicitor treatments could be an alternative to genet-
ically modi�ed (GM) plants for better attraction
of natural enemies of pest organisms on cultivated
plants [78],

(5) elicitor-treated plants bear lower ecological risks than
GM plants [79].
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