The potential use of natural essential oils in the fumigation of stored agricultural products – (review)

Zlatko Korunic^{1*}, Vlatka Rozman², Irma Kalinovic²

¹Diatom Research and Consulting Inc., 14 Greenwich Dr., Guelph, ON N1H 8B8 Canada [*zkorunic@rogers.com]

²Faculty of Agriculture, University of J.J. Strossmayer in Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia

Abstract

The authors give an overview of the concentrations of essential oils to control insect pests of stored grain, analyze the current prices of essential oils on the market and the cost of the fumigation, and discuss the potential of the introduction and the use of essential oil to fumigate stored grain. As with other groups of insecticides, the potential use of the natural essential oils (EO) in stored grain insect pest management depends on many barriers. Some of the barriers that may greatly prevent the adoption and use of the natural EO in stored grain fumigation are their relatively high concentrations needed for the effective protection of stored grain, a great difference in the sensitivity of various insect species, significant effect of different quantity of grain on the effectiveness and the current prices of natural essential oils on the market. Very high prices of essential oils, considering other characteristics (scent, sorption, penetration, aeration, etc.), may be really a very serious limiting factor for the application of natural essential oils in practice. There are two possible solutions to overcome the mentioned limiting factor; significant reduction of the prices of natural EO, or the production of the active components of natural EO synthetically.

Keyword: essential oils, fumigation, cost price, stored agricultural products

Introduction

During the past few decades application of synthetic pesticides to control agricultural pests has been a standard practice. However, with the growing evidence regarding detrimental effects of many of the conventional pesticides on health and environment, require for safer means of pest management has become very crucial^[1]. Despite of the numerous and ongoing research that have been conducted with new grain protectants, synthetic and natural ones, only a few have been adopted to be use as grain protectants. Daglish (2006)^[2] discussed the barriers under biological, technical, legal and commercial categories why the adoption of new grain protectants is not widespread.

At the beginning of the new millennium, only two fumigants were in wider use in the world; fosfine and methyl bromide. Methyl bromide was already phased out, although the critical uses still allow for some consumption awaiting alternatives, with an exception for quarantine and pre-shipment treatment. There are various reasons for the disappearance of dozen of fumigants. First of all there were health reasons (suspected or alleged carcinogens), no food registration, flammability, lack of interest, strict limitations on fumigant reregistration, etc. The restrictions on the use of fumigants have posse new global challenges to food and chemical industry and have resulted in effort to develop and register new fumigants as an alternative, primary to methyl bromide^{[3] [4]}. There are several new developed fumigants or new fumigant formulations such as sulfuryl fluoride^{[5] [6] [7]}), carbonyl sulphide^{[3] [4]}, propylene oxide^{[8] [9] [10]}), methyl iodide^[11]), ozone^[12]), ethyl formate^[13]), cyanogen^[14] and ethanDiNitrile^{[3] [4]}. Some of these fumigants suffer from the limitation and may be used only for treatment of the particular type of the commodity or for application in a specific situation only. Sulfuryl fluoride is a promising candidate for the fumigant, propylene oxide for dry

and shelled walnut, spices, cocoa powder and nutmeats^[15]), ethyl formate can be suitable for dried fruits, carbon disulfide (an old fumigant still in use) for seed materials, carbonyl sulphide for grain fumigation^{[3] [4]}. The global challenges in the research and development of new fumigants and technology of fumigation are in the development of the fumigants that will successfully replaced highly effective and pretty cheap phosphin and methyl bromide^{[3] [4]}).

The use of botanical pesticides has been emerging as one of prime means to protect crops and their products and the environment from pesticide pollution, which is a global problem^[16] ^[17]). When extracted from plants, these chemicals are referred to collectively as "botanicals". Botanical insecticides possess a spectrum of properties including insecticidal activity, repellence to pests, antifeedancy, insect growth regulation, toxicity to nematodes, mites, snail and slugs, and other pests of the agricultural importance. Also they possess antifungal, antiviral, and antibacterial properties against pathogens. Generally, botanicals degrade more rapidly than most conventional (synthetic) pesticides, and so are considered relatively environmentally benign and less likely to kill beneficial insects and mites than insecticides with longer residual activity. Since most of them generally degrade within a few days, and sometimes within a few hours, these insecticides must be applied more often. More frequent application, plus higher costs of production usually makes botanicals more expensive to use than synthetic insecticides^[16]). Among botanicals the plant volatile essential oils (EO) are the most frequently studied as pesticides for pest and diseases management^{[18] [17] [19] [20] [21] [22]}.

However, the essential oils, beside a large scale demonstration of their efficacy and penetration, need a lot of research in order to determine their toxicological and safety data prior to the registration^[2]). Also, as with other groups of insecticides, the potential use of the natural EO in stored grain insect pest management depends on many factors. Isman (1997)^[23] tried to outline the challenges and barriers to the development and commercialization of new botanical insecticides and other natural insecticides. He believed, in spite of mostly favourable toxicology and minimal environmental impact and the efficacy, botanicals and other natural insecticides need to fulfil many other considerations for the successful commercialization and use. However, he believes that this group of insecticides may find a place in applications where there is a greater tolerance for the presence of insects and a focus is placed on environmental safety.

According to Rajendran and Sriranjini (2008)^[24], although in laboratory tests with adult insects some of the plant extracts have shown significant insect toxicity, their physical properties such as high boiling point, high molecular weight and very low vapor pressure are barriers for application in large-scale fumigations. The authors believe that plant products have the potential for small-scale treatments and space fumigations. Still there is lack of data for single or multiple components of essential oils on sorption, tainting and residues in food commodities. Also, the requirements for the registration of plant products may be another barrier^[24].

We believe that the other of factors that may greatly prevent the adaptation and use of the natural EO in stored grain fumigation are their relatively high concentrations needed for the effective protection of stored grain against insect pests, a great difference in the sensitivity of various insect species and the current prices of natural essential oils on the market.

The objectives of this review paper are:

- (a) to give an overview of the concentrations of essential oils to control insect pests of stored grain,
- (b) to analyze the current prices of essential oils on the market and the cost of the fumigation, and
- (c) to discuss the potential of the introduction and the use of essential oil to fumigate stored grain.

An overview of the concentrations of essential oils to control insect pests of stored grain

The concentrations of natural EO and its active components needed for effective fumigation have been studied by many researchers. In order to enable the comparison of toxicity data we analyzed the reports that presented the doses of EO in the volume, mostly in $\mu g L^{-1}$ or $\mu l L^{-1}$, published during the last 10 years.

Shaaya et al. $(1997)^{[18]}$ were assessed the fumigant activities of a large number of essential oils extracted from various spices and herb plants against *Tribolium castaneum* (Herbst) *Sitophilus oryzae* (L.), *Rhyzopertha dominica* (F.) and *Oryzaephilus surinamensis* (L.). The highly active *Labiatae* sp. oil ZP51, in a concentration of 1.4–4.5 µl L⁻¹ air and exposure time of 24 h caused 90% kill of all the insects in space tests. However, in columns 70% filled with wheat, a concentration of 50 µl L⁻¹ and 7 d exposure were needed to obtain 94–100% kill of the insects.

Liu and Ho $(1999)^{[25]}$ evaluated the fumigant activities of the essential oil extracted from *Evodia rutaecarpa* Hook f. et Thomas, against *Sitophilus zeamais* (Motsch.) adults and *T. castaneum* larvae and adults. *S. zeamais* LC₅₀ was 41 µg L⁻¹ air and *T. castaneum* LC₅₀ was 11.7 µg L⁻¹ air.

Rahman and Schmidt $(1999)^{[26]}$ examined the toxic effects of vapors of essential oils of *Acorus calamus* (L.) rhizomes obtained from three countries; India, Russia, and Former Yugoslavia on the adults and eggs of *Callosobruchus phaseoli* (Gyllenhal) reared on seeds of *Lablab purpureus* (Medik.). Significant reduction of oviposition was found in oils vapours at 5 and 10 µL oil per 400 ml jar (12.5 to 25 µL oil per 1000 ml jar) after 24 h exposure. Newly-laid eggs were more susceptible than older ones.

Tunç et al. $(2000)^{[27]}$ tested the ovicidal activity of essential oil vapours distilled from anise *Pimpinella anisum* (L.), cumin *Cuminum cyminum* (L.), eucalyptus *Eucalyptus camaldulensis* (Dehnh.), oregano *Origanum syriacum* (L.) var. *bevanii* and rosemary *Rosmarinus officinalis* (L.) against the confused flour beetle, *Tribolium confusum* (du Val.), and the Mediterranean flour moth, *Ephestia kuehniella* (Zeller). The exposure to vapours of essential oils from anise and cumin resulted in 100% mortality of the eggs. At a concentration of 98.5 µl L⁻¹ of anise essential oil the LT₉₉ values were 60.9 and 253.0 hours for *E. kuehniella* and *T. confusum*, respectively. For the same concentration of the essential oil of cumin, the LT₉₉ value for *E. kuehniella* was 127.0 h.

Sánchez-Ramos and Castañera $(2000)^{[28]}$ found out that the vapor of natural monoterpenes pulegone, eucalyptol, linalool, fenchone, menthone, α -terpinene and γ -terpinene at the concentration of 14 µl L⁻¹ or below generated 90% mortality of mobile stages of *Tyrophagus putrescentiae* (Schrank).

Lee et al. $(2001)^{[29]}$ examined the fumigant toxicity of different essential oils towards the rice weevil, *S. oryzae*. The essential oil from eucalyptus contained 1,8-cineole (81.1%), limonene (7.6%) and α -pinene (4.0%). The oil generated LD_{5 0}= 28.9 µl L⁻¹ air. 1, 8- cineole was more active (LD₅₀=23.5 µl L⁻¹ air) than limenone and α -pinene. Benzaldehyde (LD₅₀=8.65 µl L⁻¹ air) occurring in peach and almond kernels had also a potent fumigant toxicity towards the rice weevils.

Papachristos and Stamopoulos $(2002)^{[30]}$ assessed the toxicity of vapours of the essential oils from *Lavandula hybrida* (Reverch.), *R. officinalis* and *Eucalyptus globulus* (Lab.) against the larvae and pupae of *Acanthoscelides obtectus* (Say.). The essential oil vapours were toxic to all immature stages tested with LC₅₀ values ranging between 0.6 and 76 µl L⁻¹ air, depending on oil and development stages.

Lee et al. $(2003)^{[20]}$ evaluated the fumigant toxicity of twenty naturally occurring monoterpenoids against S. oryzae, T. castaneum, O. surinamensis, the house fly, Musca

domestica L., and the German cockroach, *Blattella germanica* L. Cineole, *l*-fenchone, and pulegone at 50 μ g ml⁻¹ air caused 100% mortality in all five species tested.

Lee et al. $(2004)^{[21]}$ studied the potent fumigant toxicity of 42 essential oils and found out that six of them extracted form *Eucalyptus nicholi* (Maiden & Blakely), *E. codonocarpa* (Blakely & McKie), *E. blakely* (Maiden), *Callistemon sieberi* (F.Muell.), *Melaleuca fulgens* (R.Br.) and *M. armillary* (R.Br.) were toxic to *S. oryzae*, *R. dominica* and *T. castaneum*. The LD 50 and LD 95 against the adults of *S. oryzae* were between 19.0 to 30.6 and 43.6 to 56.0 μ g ml⁻¹ air, respectively. The LD95 of 1,8-cineole was for *S. oryzae* 47.9, for *R. dominica* 30.4 and for *T. castaneum* 21.0 μ g ml⁻¹ air. The fumigant toxicity of five oils in the space 50% filled up with wheat was 3 to 5 times lower in 50% filled up the space than in an empty space and in a case of EO extracted from *E. codonocarpa* in 50% filled up the space with wheat, even 9 times less toxic.

Prajapati et al. $(2005)^{[31]}$ were evaluated the insecticidal, repellent and ovipositiondeterrent activity of essential oils extracted from 10 medicinal plants against *Anopheles stephensi*(Liston), *Aedes aegypti* (L.) and *Culex quinquefasciatus* (Say.). The essential oil of *Pimpinella anisum* (L.) showed toxicity against 4th instar larvae of *A. stephensi* and *A. aegypti* with equivalent LD₉₅ values of 115.7 µg ml⁻¹, whereas it was 149.7 µg ml⁻¹ against *C. quinquefasciatus* larvae. Essential oils of *Zingiber officinale* and *Rosmarinus officinalis* were found to be ovicidal and repellent, respectively towards the three mosquito species.

Ketoh et al. $(2005)^{[32]}$ studied the effectiveness of the essential oil extracted from *Cymbopogon schoenanthus* (L.) against all development studies of *Callosobruchus maculatus* (Fab.). At the highest concentration tested (33.3 µl L⁻¹) all adults of *C. maculatus* were killed within 24 h of exposure to the oil and the development of newly laid eggs and neonate larvae was also inhibited.

Ketoh et al. $(2006)^{[33]}$ assessed the insecticidal activity of crude essential oil extracted from *Cymbopogon schoenanthus* (L.) and of its main constituent, piperitone, on different developmental stages of *C. maculatus*. Piperitone was more toxic to adults with a LC₅₀ value of 1.6 µl L⁻¹ vs. 2.7 µl L⁻¹ obtained with the crude extract.

Tapondjou et al. $(2005)^{[34]}$ investigated the toxicity of cymol and essential oils of *Cupressus sempervirens* (L.) and *Eucalyptus saligna* (Sm.) against *S. zeamais* and *T. confusum. Eucalyptus* oil was more toxic than *Cupressus* oil to both insect species (LD₅₀=0.36 µl cm⁻² for *S. zeamais* and 0.48 µl cm⁻² for *T. confusum*) on filter paper discs, and was more toxic to *S. zeamais* on maize (LD₅₀=38.05 µl per 40 g grain).

Wang et al. $(2006)^{[35]}$ investigated repellent and fumigant activity of essential oil from mugwort *Artemisia vulgaris* (L.) to *T. castaneum*. At 8.0 µl mL⁻¹, mortality of adults reached 100%, but with 12-, 14- and 16-day larvae, mortalities were 49%, 53% and 52%, respectively. At dosages of 10, 15 and 20 µl L⁻¹ air and a 96 h exposure period, mortality of eggs reached 100%. No larvae, pupae and adults were observed following a 60 µl L⁻¹ dosage.

Choi Won-Sik et al. $(2006)^{[36]}$ determined the toxicity of volatile components of thyme, sage, eucalyptus, and clove bud against the mushroom sciarid, *Lycoriella mali* (Fitch.) α -Pinene was the most toxic fumigant compound found in thyme essential oil (LD50=9.85µl L⁻¹ air) followed by β -pinene (LD50=11.85µl L⁻¹ air) and linalool (LD50=21.15µl L⁻¹ air). The mixture of α - and β -pinene exhibited stronger fumigant toxicity than α - or β -pinene itself against the mushroom fly adults.

Negahban et al. $(2007)^{[37]}$ determined the content of essential oil extracted form *Artemisia* sieberi (Besser). The oil contained camphor (54.7%), camphene (11.7%), 1,8-cineol (9.9%), β -thujone (5.6%) and α - pinene (2.5%). The mortality of 7 days old adults of *C. maculatus*, *S. oryzae*, and *T. castaneum* increased with concentration from 37 to 926 µl L⁻¹ and with exposure time from 3 to 24 h. A concentration of 37 µl L⁻¹ and an exposure time of 24 h were

sufficient to obtain 100% kill of the insects. *C. maculatus* was significantly more susceptible than *S. oryzae* and *T. castaneum*.

Rozman et al. $(2007)^{[22]}$ investigated the toxicity of 1,8-cineole, camphor, eugenol, linalool, carvacrol, thymol, borneol, bornyl acetate and linalyl acetate against adults of *S. oryzae*, *R. dominica and T. castaneum*. The most sensitive species was *S. oryzae*, followed by *R. dominica. T. castaneum* was highly tolerant of the tested compounds. 1,8-Cineole, borneol and thymol were highly effective against *S. oryzae* when applied for 24 h at the lowest dose (0.14 µl L⁻¹). For *R. dominica* camphor and linalool were highly effective and produced 100% mortality in the same conditions. Against *T. castaneum* no oil compounds achieved more than 20% mortality after exposure for 24 h, even with the highest dose (139 µl L⁻¹). However, after 7 days exposure, 1,8-cineole produced 92.5% mortality, followed by camphor (77.5%) and linalool (70.0%).

Stamopoulos et al. $(2007)^{[38]}$ were tested vapor form of monoterpenoids terpinen-4-ol, 1,8cineole, linalool, *R*-(+)-limonene and geraniol against different stages of *T. confusum*. The LC₅₀ values ranging between 1.1 and 109.4 µl L⁻¹ air) for terpinen-4-0l, from 4 and 278 µl L⁻¹ air for (*R*)-(+)-limonene (with LC₅₀ and from 1,8-cineole 3.5 and 466 µl L⁻¹ air were the most toxic to all stages tested, followed by linalool (with LC₅₀ values ranging between 8.6 and 183.5 µl L⁻¹ air) while the least toxic monoterpenoid tested was geraniol with LC₅₀ values ranging between 607 and 1627 µl L⁻¹ air.

Korunic and Rozman (2008)^[39] carried out three different experiments with 1,8-cineole. The authors conducted experiment in order to determine the efficacy of 509g m⁻³ of cineole against different developmental stages of S. orvzae, R. dominica and Cryptolestes ferrugineus (Steph.) in wheat grain in the space 50% filled up with grain. Apparently, applied dose of 50 g m^{-3} was not sufficient for effective control of younger developmental stages of S. oryzae, R. dominica and even C. ferrugineus, the most sensitive species among tested. In the second experiment authors tested the effective concentration of cineole against adults of S. oryzae, R. dominica, T. castaneum and C. ferrugineus in space 50% filled up with wheat applying cineole in the concentration range of 50, 100, 150, 200, 250 g m⁻³. The 100% mortality of C. ferrugineus was obtained with 50 g m⁻³ (lowest applied concentration). However, 100% mortality of *R. dominica* was obtained with concentration of 150 g m⁻³ and 100% mortality of S. oryzae and T. castaneum at concentration of 250 g m⁻³. In the third experiment the concentration of 50 g m⁻³ cineole in spaces differently filled up with wheat (empty space, 50%) and 95% filled up) was assessed against the same four species. This concentration in empty space induced nearly 100% mortality in all four tested insect species. However, fumigation in a space 50% filled up with wheat, cineole was absolutely effective against C. ferrugineus only, with 50% to 60% efficacy against rice weevil and lesser grain borer, and only 11% against red flour beetle. In space 95% filled up with wheat mortality of rusty grain beetle was 88%, rice weevil 34%, lesser grain borer 64% and red flour beetle only 4.5%.

The results of Shaaya et al. (1997)^[25], Lee et al. (2004)^[21] and Korunic and Rozman (2008)^[39] demonstrated the significant effect of different quantity of wheat grain in the same volume on the effectiveness of EO against stored grain insect pests. In a space filled with grains for the successful control several times higher concentrations has to be applied in the comparison with concentrations applied in an empty space. This may be one of a very important limited factor for wider use of EO in grain fumigation.

The current price of essential oils on the market and the cost of the fumigation

Currently, EO are sold in different packages containing 5 ml, 14.75 g (1/2 oz) up to 907.2 g (32 oz) and 3780 ml (US gallon). The prices depend on the type of the essential oil,

technology of the extraction, the size of the package and on producers, as well. The prices of EO sold by different producers, generally speaking, may be significantly different (Table 1). The size of the package greatly affects the cost of EO. One gram of Citronella EO in the package of 14.175 g (1/2 oz) costs US \$ 0.49 but in a gallon (3789 ml) 1 ml.costs US \$0.065; 1g of Lavandin organic EO in the package of 14.175g costs US \$ 0.69 costs but in a gallon 1 ml costs US \$0.16; 1 g of Lavender Provence-Organic EO in a package of 14.175 g costs US \$1.28 but in a gallon 1 ml costs US \$0.46, etc. Also, the prices of various EO are significantly different. For example, in the package of 14.175 g (1/2 oz) 1 g of different oils costs from US \$ 0.49 (Citronella) to US \$1.3 (Juniperus Berry). In the package of 907.2 g (32 oz) 1 g costs from US \$0.32 (myrtle) to US \$5.54 (Jasmine Absolute). In the package of 3789 ml (US gallon) 1 ml of different essential oils costs from US \$0.064 (Citronella) to US \$0.47 (Oregano) (the producer Dreaming Earth Botanicals, LLC, Ashenwill, NC, USA).

			Cost of	Cost of 1 g
Essential oil	Producer	Size of	package	or 1 ml
		package*	(US \$)	(US \$)
Lavender Provence	Dreaming earth botanicals,	3780 ml	173.00	0.045
Oganic (France)	LLC, Ashenville, NC, USA	(US galloon)		
Lavender Spike	Snowdrift Farm, Inc.	2268g	169.95	0.074
France		(80 oz)		
Bulgarian Lavender	Snowdrift Farm, Inc.	2268g	285.00	0.125
-		(80 oz)		
Lavandin FCC France	Snowdrift Farm, Inc.	2268g	159.95	0.070
		(80 oz)		
Lavandin Organic	Dreaming earth botanicals,	3780 ml	623.00	0.164
	LLC, Ashenville, NC, USA	(US galloon)		
Geranium	Dreaming earth botanicals,	3780 ml	1055.00	0.278
	LLC, Ashenville, NC, USA	(US gallon)		
Geranium Burbon	Snowdrift Farm, Inc.	2268g	639.20	0.277
		(80 oz)		
Geranium Egyptian	Snowdrift Farm, Inc.	2268g	356.25	0.157
Rose		(80 oz)		
Rosemary (Maroccan)	Snowdrift Farm, Inc.	2268g	154.95	0.068
·		(80 oz)		
Rosemary (Spanish)	Dreaming earth botanicals,	3780 ml	528.00	0.139
	LLC, Ashenville, NC, USA	(US gallon)		
Juniperus (Italy)	Snowdrift Farm, Inc.	2268g	525.00	0.231
		(80 oz)		
Juniperus Berry	Dreaming earth botanicals,	3789 ml	2360.00	0.622
Organic (Croatia)	LLC, Ashenville, NC, USA	(US gallon)		
Thyme linalool	Dreaming earth botanicals,	907.2g	408.00	0.449
	LLC, Ashenville, NC, USA	(32 oz)		
Bay (Laurus nobilis)	Dreaming earth botanicals,	3789 ml	1214.00	0.320
	LLC, Ashenville, NC, USA	(US gallon)		
Tagetes	Dreaming earth botanicals,	3789 ml	1598.00	0.421
	LLC, Ashenville, NC, USA	(US gallon)		
Clove bud	Dreaming earth botanicals,	3789 ml	998.00	0.263
	LLC, Ashenville, NC, USA	(US gallon)		
Myrtle	Dreaming earth botanicals,	907.2g	321.00	0.353
	LLC, Ashenville, NC, USA	(32 oz)		

Table 1. The approximate prices of essential oils (EO)

Pepper, black	Dreaming earth botanicals,	3789 ml	752.00	0.198
	LLC, Ashenville, NC, USA	(US gallon)		
Bergamot	Dreaming earth botanicals,	907.2g	338.00	0.372
	LLC, Ashenville, NC, USA	(32 oz)		
Lemon Organic	Dreaming earth botanicals,	3789 ml	623.00	0.164
	LLC, Ashenville, NC, USA	(US gallon)		
Patchouli	Dreaming earth botanicals,	3789 ml	731.00	0.192
	LLC, Ashenville, NC, USA	(US gallon)		
Patchouli (India)	Snowdrift Farm, Inc.	2268g	475.00	0.209
		(80 oz)		
Jasmin Obsolute	Dreaming earth botanicals,	850.5g	4717.00	5.546
	LLC, Ashenville, NC, USA	(30 oz)		
Nutmeg FCC (East	Snowdrift Farm, Inc.	2268g	299.00	0.131
Indian)		(80 oz)		
Basil	Dreaming earth botanicals,	3789 ml	647.00	0.170
	LLC, Ashenville, NC, USA	(US gallon)		
Oregano	Dreaming earth botanicals,	3789 ml	1806.00	0.476
	LLC, Ashenville, NC, USA	(US gallon)		

*the largest package available; smaller packages are significantly more expensive.

Essential oil	Producer	Size of package*	Cost of package (US \$)	Cost of 1 g or 1 ml (US \$)	Approximative concentration; reference	Approxi- mate cost (US \$) of EO to fumigate 1 cubic meter**
Eucalyptus globulus (the usual eucalyptus)	Dreaming earth botanicals, LLC, Ashenville, NC, USA	3780 ml (US gallon)	557.00	0.147	LD50 = 28.9 μl L ⁻¹ against <i>S. oryzae</i> ^[29]	Much more than 4.2
1,8-cineole	Acros organic	100 g	23.60	5.60 0.236	LD50 =23.5 μl L ⁻¹ against <i>S. oryzae</i> ^[29]	Much more than 5.
					LC100 =50 μ l L ⁻¹ against S. oryzae, T. castaneum, O. surinamensis, Musca domestica, Blatella germanica ^[20]	11.8
					LD95 for S. oryzae was 47.9 μ l L ⁻¹ , for <i>R. dominca</i> was 30.4 and for <i>T. castaneum</i> 21 μ l L ⁻¹ , in an empty space ^[21]	4.95 to 11.3
					LD50 =from 3.5 to 3.5 to 466g μ l L ⁻¹ against <i>T. confusum</i> all stages ^[38]	Much more that 0.82 to109.9
					92.5% mortality of <i>T. castaneum</i> after 7 days of exposure to 138.8 µl L ^{-1[22]}	32.7
					In an empty space LC100 =50g m ⁻³ against <i>S. oryzae, R. dominica</i> and <i>T. castaneum</i> ^[39]	11.8
						11.8 (<i>C</i> .

Table 2. The approximate prices of essential oils (EO) and approximate cost of fumigation of cubic meter

					In a space 50% filled up with grain, LC100 =50g m ⁻³ for <i>C. ferrugineus</i> , 150g m ⁻³ for <i>R. dominica</i> , and 250g m ⁻³ for <i>S. oryzae</i> and <i>T. castaneum</i> ^[39]	ferrugineus) 35.5 (R. dominica) 59.0 (S. oryzae, T. castaneum)
					In a space 95% fill up with grain 50 g m ⁻³ caused mortality of 88% (<i>C. ferrugineus</i>), 64% (<i>R. dominica</i>) and 4.5% (<i>T. castaneum</i>) ^[39]	Much more than 11.8
Camphor	Aldrich	100g	74.45	0.744	77% mortality of <i>T. castaneum</i> after 7 days of exposure to 139 μ L ^{-1[22]}	Much more than 74.4
Linalool	Aldrich	100 g	25.93	0.259	70% mortality of <i>T. castaneum</i> after 7 days of exposure to 139 μ l L ^{-1[22]}	Much more than 25.9 to 44.9
					LD50 =from 8.6 to 183.5 μ l L ⁻¹ against <i>T. confusum</i> all stages ^[38]	Much more than 2.2 to 47.5
					LD90 =14 μl L ⁻¹ against <i>Tyrophagus</i> <i>putrescentiae</i> ^[28]	More than 3.6
Thyme linalool	Dreaming earth botanicals, LLC, Ashenville, NC, USA	907.2g (32 oz)	408.00	0.449	LD50 =21.5 μl L ⁻¹ against <i>Lycoriella</i> mali ^[36]	Much more than 5.5 to 9.6
Aniseed (Anise seed)	Dreaming earth botanicals, LLC, Ashenville, NC, USA	3789 ml (US gallon)	375.00	0.098	Anise essential oil LC99 =98.5 μ l L ⁻¹ against <i>E. kuehniella</i> and <i>T.</i> <i>castaneum</i> ^[27]	9.65

*the largest package available; smaller packages are significantly more expensive. ** μ l/L is equal to ml in cubic meter; close to g in cubic meter depending on the density of EO (for example density of cineole is 0.9225 g cm⁻³, linalool 0.858-0.868 g cm⁻³).

The potential of the introduction and the use of essential oil to fumigate stored grain

Analyzing the prices of EO produced by numerous producers by searching data available on internet, by direct contact with the producers and by analyzing the results of the effectiveness of EO published by numerous authors, it is obvious that the prices may be the limited factor for the adoption and its wider use (Table 2). It is a great difference in approximate concentrations of phosphine, methyl bromide and EO 1.8-cineole to give 95% and higher mortality of S. oryzae with 24 h exposure. According to Champ and Dyte (1976)^[40] and re-calculated from Ct based on 20 h exposure, the approximate concentration of phosphine is 0.03 g m⁻³; the approximate concentration of methyl bromide, from Ct based on 5 h exposure, is 1 g m⁻³. Lee et al. (2004)^[21] determined the concentration of 42 g m⁻³ of 1,8cineole to give 95% mortality of S. orvzae. Korunic and Rozman (2008)^[39] determined that 50 g m⁻³ of cineole in an empty space and 48 h exposure caused 100% mortality of S. oryzae, in a space 50% filled with wheat grain the mortality was 57% and in a space filled up 95% with wheat grain the mortality was 34% only. Shaaya et al. (1997)^[18] found out that the highly active Labiatae sp. oil ZP51, in a concentration of 1.4–4.5 µl L⁻¹ air and exposure time of 24 h caused 90% killed T. castaneum, S. oryzae, R. dominica and O. surinamensis. However, in columns 70% filled up with wheat, a concentration of 50 μ l L⁻¹ and 7 d exposure were needed to obtain 94–100% kill of the insects. Lee et al. (2004)^[21] found out that EO extracted form Eucalyptus nicholii, E. codonocarpa, E. blakelyi, Callistemon sieberi, Malaleuca fulgens and M. armillary were 3 to 5 times less toxic to S. oryzae, R. dominica and T. castaneum in a space 50% filled up with wheat in comparison with the toxicity in an empty space.

One (1) kg of phosphine pellets costs about US \$41.00 US, whilst 1 kg of cineole in packages of 100g reaches about US \$236.00. When the highest dosage of phosphine pellets is applied (30 pellets t⁻¹) with 1 kg of phosphine it is possible to fumigate approximately 55 tons of grain. It means the cost of phosphine to fumigate one tone of grain is about US \$0.74. With 1 kg of 1,8-cineole it is possible to fumigate 4 tons (Korunic and Rozman (2008)^[39]; 95% space filled up with wheat) to about 23 tons of grain (Lee et al. 2004^[21]; 50% space filled up with wheat). It means the cost of 1,8-cineole to fumigate one ton of grain is from approximately US \$10.00 to US \$59.00. The great effect of grain on the reduction of the effectiveness of EO may greatly increase the cost of the grain fumigation with EO and make them too expensive to be adopted for wider grain fumigation use.

Conclusion

Besides of different barriers under the process of the registration, we find such a high price for cineole, and for other essential oils as well, considering other characteristics (scent, sorption, penetration, aeration etc.), as a serious limiting factor for the application of natural essential oils in practice. We believe that there are two solutions to overcome the mentioned barriers; significant reduction of the prices of natural EO, or if possible, to produce the active components of natural EO synthetically.

References

1 Fields, P. G. 1999. Diatomaceous earth: Advantages and limitations. In Jin.Z., Liang, Q., Liang, Y., Tan, X., and Guan, L. (editors). Proceedings of the 7th International Conference on Stored-Product Protection. Beijing, P.R. China, 14-19 October 1998. Sichuan Publishing House of Science and Technology, Chengdu, Sichuan Province, P.R. China

2 Daglish G. J. 2006. Opportunities and barriers to the adoption of new grain protectants and fumigants. Proceedings 9th International Working Conference on Stored Product Protection, Sao Paolo, Brazil, pp: 209-216.

3 Navarro S., 2006. New global challenges to the use of gaseous treatments in stored products. In Proceedings of the 9th International Working Conference on Stored Product Protection. Campinas, Sao Paolo, Brazil. 15 – 18 October 2006. pp 495-516.

4 Ducom P.J.F. 2006. The Return of the Fumigants. In Proceedings of the 9^{th} International Working Conference on Stored Product Protection. Campinas, Sao Paolo, Brazil. 15 - 18 October 2006. pp 510-516.

5 Bell C.H., 2005. Factors affecting the efficacy of sulfuryl fluoride as a fumigant. In Proceedings of the 9th International Working Conference on Stored Product Protection. Campinas, Sao Paolp, Brazil. 15 – 18 October 2006. pp 519-526.

6 Tsai W. T., Mason L., Ileleyi K.E., 2006. A Preliminary Report of Sulfuryl Fluoride and Methyl Bromide Fumigation of Flour Mills. In Proceedings of the 9th International Working Conference on Stored Product Protection. Campinas, Sao Paolp, Brazil. 15 – 18 October 2006. pp 595-599.

7 Chayapraser W., Maier D.E., Ileleyi K.E, Murthy J.Y., 2006. Real-time monitoring of a flour mill fumigation with sulfuryl fluoride. In Proceedings of the 9th International Working Conference on Stored Product Protection. Campinas, Sao Paolp, Brazil. 15 – 18 October 2006. pp 541-550.

8 Griffith T., 1999. Propylene oxide, a registered fumigant, a proven insecticide. In: Obenauf G.L., Williams A. (Eds), Annual International Research Conference Conference on Methyl Bromide Alternatives and Emissions Reduction. Nov 1-4, 1999, UNEP and USDA, San Diego, California, pp.71.

9 Navarro S., Iskber A.A., Finkelman S., Rindner M., Azrieli A., Dias R., 2004. Effectiveness of short exposures of propylene oxide alone and in combination with low pressure or carbon dioxide against *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research40, 197-205.

10 Isikber A.A., Navarro S., Finkelman S., Rindner M., Dias R., 2006. Propylene oxide as a potential quarantine fumigant for insect disinfestation of nuts. In Proceedings of the 9th Imternational Working Conference on Stored Product Protection. Campinas, Sao Paolo, Brazil. 15 – 18 October 2006. pp 630-634

11 Greech N. M., Ohr H. D., Sims J. J., 1996. Methyl iodide as a soil fumigante. U.S patent No. 5,518,692, May 1996. U.S. Patent and Trade-mark Office.

12 Mason L.J., Strait C.A., Woloshuk C.P., Maier D.E., 1999. Controlling stored grain insects with ozone fumigation. In: Proceedings of the 7th International Working Conference on Stored Product Protection Beijing, China, October 1998, pp. 536-547.

13 Annis P.C., Graver J.E., Van S., 2000. Ethyl formate – a fumigant with potential for rapid action. In: 2000 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction. Orlando, 6-9 Nov, 2000, pp.70-1; 70-3

14 Yong L.R., Trang L.V., 2003. Cyanogen: A possible fumigant for flour/rice mills and space fumigation. In: Proceedings of the 8th International Working Conference on Stored Product Protection, York, CAB International, Oxon, UK, pp. 651-653.

15 Zettler J.L., Leesch, J.G., Gill R.F., Tebbets J.C., 1999. Chemical alternatives for methyl bromide and phosphine treatments for dried fruits and nuts. In: Proceedings of the 7th Imternational Working Conference on Stored Product Protection Beijing, China, October 1998, pp. 561-554

16 Prakash, A., Rao, J., 1997. Botanical Pesticides in Agriculture. CRC Press, Inc., 2000 Corporate Bld, N.W., Boca Raton, FL, USA.

17 Isman M.B., 2000. Plant essential oils for pest and diseases management. Crop Protection 19, 603-608.

18 Shaaya E., Kostjukovski M., Eilberg J. and Sukprakarn C. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. J.S.P.R. Volume 33/1:7-15.

19 Pascual-Villalobos M.J., 2003. Volatile activity of plant essential oils against stored product beetle pests. In: Proceedings of the 8th International Working Conference on Stored Product Protection, York, CAB International, Oxon, UK, pp. 648-650.

20 Lee S., Peterson C. J. and J. R. Coats 2003.Fumigation toxicity of monoterpenoids to several stored product insects. Journal of Stored Products Research Volume 39, Issue 1, Pages 77-85.

21 Lee, B. H., Annis, P. C., Tumaalii F. 2004. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. Journal of Stored Products Research, 40: 553-564.

22 Rozman V., Kalinovic I. and Korunic Z. 2007. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. Journal of Stored Products Research Volume 43, Issue 4, Pages 349-355

23 Isman, M.B., 1997. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica 25(4), 339-344.

24 Rajendran, R., Sriranjini, V., 2008. Plant products as fumigants for stored-product insect control . Journal of Stored Product Research 44, pp. 126-135.

25 Liu Z. L. and Ho S. H. 1999. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). Journal of Stored Products Research Volume 35, Issue 4, Pages 317-328

26 Rahman M. M. and Schmidt G. H. 1999. Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleoptera: Bruchidae). Journal of Stored Products Research Volume 35, Issue 3, Pages

27 Tunç I., Berger B. M., Erler F. and Daglı F. 2000. Ovicidal activity of essential oils from five plants against two stored-product insects. Journal of Stored Products Research Volume 36, Issue 2, Pages 161-168

28 Sánchez-Ramos I. and Castañera P. 2000. Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food. Journal of Stored Products Research Volume 37, Issue 1, Pages 93-101

29 Lee Byung-Ho, Choi Won-Sik, Lee Sung-Eun and Park Byeoung-Soo 2001. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, *Sitophilus oryzae* (L.). <u>Crop Protection Volume 20, Issue 4</u>, Pages 317-320

30 Papachristos D. P. and Stamopoulos D. C. 2002. Toxicity of vapours of three essential oils to the immature stages of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Stored Products Research Volume 38, Issue 4, Pages 365-373

31 Prajapati V, Tripathi A.K., Aggarwal K.K. and Khanuja S.P.S. 2005. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against *Anopheles stephensi*, *Aedes aegypti* and *Culex quinquefasciatus*. <u>Bioresource Technology Volume 96</u>, <u>Issue 16</u>, Pages 1749-1757

32 Ketoh G. K., Honore K. Koumaglo and Isabelle A. Glitho I. A. 2005. Inhibition of *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae) development with essential oil extracted from *Cymbopogon schoenanthus* L. Spreng. (Poaceae), and the wasp *Dinarmus basalis* (Rondani) (Hymenoptera: Pteromalidae). Journal of Stored Products Research Volume 41, Issue 4, Pages 363-371

33 Ketoh G. K., Honore K., Koumaglo, Glitho I. A. and Jacques Huignard J. 2006. Comparative effects of *Cymbopogon schoenanthus* essential oil and piperitone on *Callosobruchus maculatus* development. <u>Fitoterapia Volume 77</u>, <u>Issues 7-8</u>, Pages 506-510.

34 Tapondjou A. L., Adler C., Fontem D. A., Bouda H and Reichmuth C. 2005. Bioactivities of cymol and essential oils of *Cupressus sempervirens* and *Eucalyptus saligna* against *Sitophilus zeamais* Motschulsky and *Tribolium confusum* du Val. Journal of Stored Products Research Volume 41, Issue 1, Pages 91-102

35 Wang J., Zhu F., Zhou X. .M, Niu C.Y. and Lei C.L. 2006. Repellent and fumigant activity of essential oil from *Artemisia vulgaris* to *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research Volume 42, Issue 3, Pages 339-347.

36 Choi Won-Sik, Park Byeoung-Soo, Lee Young-Haeng, Jang Do Youn, Yoon Hey Young and Lee Sung-Eun 2006. Fumigant toxicities of essential oils and monoterpenes against *Lycoriella mali* adults. <u>Crop Protection Volume 25, Issue 4</u>, Pages 398-401

37 Negahban M, Moharramipour S and Sefidkon F 2007. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, *Sitophilus oryzae* (L.). Journal of Stored Products Research, Volume 43, Issue 2, Pages 123-128.

38 Stamopoulos D.C., Damos P. and Karagianidou G. 2007. Bioactivity of five monoterpenoid vapours to *Tribolium confusum* (du Val) (Coleoptera: Tenebrionidae). Journal of Stored Products Research Volume 43, Issue 4, Pages 571-577

39 Korunic Z. and Rozman V. 2008. Fumigacija cineolom *in vitro* (Fumigation with cineole essential oil *in vitro*). In Proceedings of Croatian Seminar DDD and ZUPP 2008, Sibenik, Croatia, April 2-4, 2008.

40 Champ B R, Dyte C E. Report of FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Production and Protection Series No. 5, FAO, 1976, Rome.